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Precise estimation of inter-sensor distances is essential for reliable
localisation in Internet of Things sensor networks. A cost-effective,
scalable, asynchronous solution to estimate inter-sensor distances
based solely on measurements of distances to a moving object is pro-
posed. More specifically, the proposed solution estimates uncharted
distances using trigonometry and processes these estimated distances
with a distributed weighted multi-dimensional scaling algorithm for
more precise localisation of sensors. It is demonstrated that the pro-
posed solution achieves the localisation error of 4.8–33.9 cm when
the measurement errors of sensor devices are in the range of 5–40%.
Introduction: The advent of Internet of Things (IoT) enables physical
things to sense and control environments remotely and ubiquitously.
As the cyber world gets tightly coupled with the physical world, IoT ser-
vices can potentially offer huge economic benefits. To reap such
benefits, many IoT applications require exact localisation based on dis-
tances amongst things, i.e. IoT/sensor devices. Most prior localisation
techniques have assumed that these distances are always known or
given in advance [1]. However, as IoT devices typically use cheap
off-the-shelf heterogeneous sensors and/or line-of-sights can be easily
blocked by obstacles, distances amongst IoT devices (i.e. inter-sensor
distances) are likely to be unavailable or partially available only for
certain area [2]. In such cases, applications relying on localisation
through precise inter-sensor distances are likely to make poor or
wrong decisions, which diminishes the usefulness of such applications.

To estimate inter-sensor distances, we may consider some known
techniques such as time difference of arrival (TDOA) and received
signal strength indication (RSSI) that rely on transmission/reception of
RF signals. Nevertheless, it is impractical to use TDOA since tight
clock synchronisation amongst IoT devices is very challenging for
resource-poor devices [3]. Moreover, RSSI cannot satisfy the required
level of accuracy in estimating inter-sensor distances.

Motivated by this, we propose trigonometry-based inter-sensor dis-
tance estimation (TIDE), which estimates distances between IoT
devices solely based on measuring distances from IoT devices to a
moving object (e.g. a resident in a smart home) with ultrasound, infrared,
or laser sensors; IoT devices are typically too small for cheap ultrasound,
infrared, or laser sensors (without RF capability) to measure distances to
other small IoT devices. For precise estimation of inter-sensor distances
using these cheap sensors, TIDE (i) identifies on-the-fly triangles
amongst devices, each enclosing the moving object, by using trigon-
ometry; (ii) estimates an inter-sensor distance between two devices
belonging to each triangle; and (iii) integrates/averages these inter-sensor
distances to improve the estimation accuracy. Subsequently, the estimated
inter-sensor distances can be used by a localisation algorithm to construct
a network-wide map of device locations.

To choose a suitable localisation algorithm, we must consider two
challenges: (i) only a subset of devices within the network can
measure distances to a moving object at a certain point of time, and
(ii) the estimated inter-sensor distances may still render some errors.
To address these two challenges, we synergistically incorporate TIDE
with the distributed weighted multi-dimensional scaling (dwMDS)
algorithm [4]. A salient aspect of TIDE with dwMDS (TIDE/
dwMDS) is that we can achieve high precision for both inter-sensor dis-
tance estimation and network-wide localisation although the network
does not offer clock synchronisation amongst devices. Our evaluation
shows that TIDE/dwMDS can achieve the inter-sensor distance esti-
mation error of 6.17 and 30.45 cm for distance measurement error of
5 and 25%, respectively. In subsequent sections, we describe the
detailed procedure of TIDE/dwMDS and evaluate its efficacy.

Trigonometry-based inter-sensor distance estimation: Given a network
of N IoT devices, S = {si}

N
i=1, we first determine a set of triangles at

time t > 1, Γ(t), that encloses a moving object using a trigonometrical
procedures as follows. We first find a set of devices that has detected
the moving object at time t− 1 and t. For each device si that has detected
the moving object, we compute the difference of measured distances
Δdi(t) = di(t)− di(t− 1), where di(t) and di(t− 1) are measured distances
between si and a moving object at time t and t − 1, respectively.
Furthermore, we group si with other two neighbouring devices to
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form a unique triangle. If all of Δdi(t) constituting the triangle are
either positive (increasing) or negative (decreasing), the mobile object
is concluded to be outside the triangle. In contrast, the mobile object
is enclosed within the triangle if one of Δdi(t) has a sign opposite to
the rest, and hence we add that triangle to Γ(t) while the device with
an opposite sign from the other two is later used as a pivot device for
inter-sensor distance estimations.

Once Γ(t) is identified, we estimate the inter-sensor distances between
devices si and sj, where i≠ j and 1≤ i, j≤N, as follows. First, we identify
a set of triangles �Gij(t) , G(t) satisfying two conditions: (i) each triangle
has si and sj as vertices, and (ii) si or sj must be the pivot device. This
set may or may not be empty. If �Gij(t) is empty, inter-sensor distance esti-
mation between si and sj cannot be made at time t. On the other hand, when
the set is not empty, the inter-sensor distance between si and sj, d

k
ij(t), is

computed using the kth triangle of �Gij(t) as follows

dkij(t) ≃
LBk

ij(t)+ UBk
ij(t)

2

=
���������������
di(t)

2 + dj(t)
2

√
+ di(t)+ dj(t)

2

(1)

where LBk
ij(t) and UBk

ij(t) distances are illustrated in Fig. 1a, which are
limited by the angles ranging from 90 to 180° due to the trigonometry
and the aforementioned enclosing triangle detection mechanisms.
Note that multiple triangles within �Gij(t) which include si and sj at
time t can generate multiple distance estimations of dkij(t).
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Fig. 1 Examples of TIDE

a Relative distance measurements amongst neighbour devices
b Computation of d̂ij(t) when object moves

Algorithm 1 TIDE and dwMDS pseudocode

1: Initialise:
t = 0; random coordinates X(0) = [x1(0), …, xN(0)];
C(0); compute ai according to [4]

2: do
3: t← t + 1
4: for k = 1 to|�Gij(t)| do
5: for all i and j combination do
6: Compute dkij(t) using (1)
7: if t≥K then
8: for all i and j combination do
9: Compute d̂ij(t) using (2)
10: C(t) = C(t− 1)
11: for i = 1 to N do
12: Compute bi(t− 1) according to [4]
13: xi(t) = aiX(t− 1)bi(t− 1)
14: Compute ci(t) using (3)
15: C(t)← C(t)− ci(t− 1) + ci(t)
16: Broadcast xi(t) to neighbours of si and send C(t) to the next device
17: while C(t− 1)− C(t) < ε
To further improve the accuracy, we integrate dkij(t) for the past K rounds
of estimations and compute an average value as

d̂ij(t) =
∑

l

∑|�Gij (l)|
k=1 dkij(l)∑
l |�Gij(l)|

(2)

where t≥K, t−K + 1≤ l≤ t, and |�Gij(l)| is the number of estimations
(triangles) made between si and sj at iteration l. Running example can
be found in Fig. 1b. Once d̂ij(t) is acquired by going through the
above processes, this information is applied to dwMDS to identify the
precise coordinates of devices.
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According to our experiment, TIDE can offer reasonably precise dis-
tance estimation results. This indicates that TIDE can be applied to a
variety of IoT network applications without the need for explicitly
measuring inter-sensor distances.

Self-localisation through dwMDS: Given d̂ij(t), we apply dwMDS to
perform localisation. Considering that IoT environments foster distribu-
ted and heterogeneous network of cheap, off-the-shelf IoT devices,
dwMDS may satisfy such needs as device coordinates are iteratively
identified using d̂ij(t). Furthermore, we note that the effect of errors in
distance estimation by TIDE can be gracefully resolved using
dwMDS since iterative minimisation of the global cost can adjust the
coordinates of individual device at every iteration based on their dis-
tance relationship between itself and the neighbours.

Let xi(t) denote a p × 1 coordinate vector representing an estimated coor-
dinate of device si at iteration t. The dwMDS searches si’s true coordinate
by iteratively minimising the global cost, C(t) as depicted in Algorithm 1,
in which it: (i) randomly chooses its initial coordinate matrix,X(0) = [x1(0),
…, xN(0)]; (ii) at each iteration t, refines the estimated coordinates by pro-
cessing {d̂ij(t), xi(t − 1)} j=i with update formulae for ai and bi(t) defined
in [4]; (iii) broadcasts the updated coordinate xi(t) to neighbours of si as
well as send C(t) to the next device; and (iv) terminates its process
when the estimated coordinate converges to a certain location such that
C(t) is minimised below a threshold, i.e. C(t− 1)−C(t) < ε, and other-
wise, repeats the process at the next iteration.

The local cost between si and sj in the tth iteration is defined as
cij(t) = wij(d̂ij(t)− ‖xi(t)− xj(t)‖)2 where ‖x‖ is the Euclidean norm
of the vector x, and the weight wij reflects the accuracy of estimated dis-
tances between si and sj. The cost of si, ci(t), at iteration t is then com-
puted by summing up the local costs as

ci(t) =
∑N
j=1

cij(t) =
∑N
j=1

wij d̂ ij(t)− ‖xi(t)− xj(t)‖
[ ]2

(3)

Performance evaluation: The efficacy of TIDE/dwMDS is evaluated
under two different network topology settings: (i) devices form a
square grid with an edge length of 1 m, and (ii) devices are randomly
deployed. Throughout the evaluation, a mobile object is randomly
moving at the speed of 4 km/h. We add uniformly generated random
errors to distance measurements, e.g. a 5% error in measuring 1 m dis-
tance produces random values in the range of 0.95 and 1.05 m. We also
use two performance criteria: the accuracy of inter-sensor distance esti-
mations and the error of localisation.
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Fig. 2 Evaluation of TIDE

a Inter-sensor distance estimation error versus error in real measurements
b Inter-sensor distance estimation accuracy versus number of measurements from
IoT devices

To evaluate the accuracy of inter-sensor distance estimations, we create
a simulation environment consisting of four devices forming a square grid.
As shown in Fig. 2a, the distance estimation error is linearly proportional
to the measurement error added to di(t). When the measurement error
equals 20%, TIDE/dwMDS achieves the estimation error of 24.1% with
standard deviation of 4.2. Furthermore, the measurement error of 40%
yields the estimation error of 48.2%with standard deviation of 7.9. In com-
parison with actual measurement of distances between devices, TIDE/
dwMDS yields marginal distance estimation errors. Considering that an
additional distance measurement error of 20% can be easily observed in
real environments, we may determine the number of needed measurements
to achieve reasonable estimation accuracy using d̂ij(t). According to
Fig. 2b, the estimation accuracy of 75.9% is achieved when 25 or more
measurements are made. Increasing the number of measurements
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beyond 50 has a marginal effect on estimation accuracy, and the estimation
error converges to the desired reference after 180 or more measurements.

For the evaluation of localisation performance, we generate two different
network topologies, grid style and random deployment, by varying the
number of devices, N as plotted in Fig. 3. The results in Fig. 3 shows
that increasing the number of devices lowers the localisation error due to
the fact that the number of triangles that include si and sj increases as
well. In case of a grid-like network topology, N > 16 shows marginal
gain in estimation accuracy, while random deployment achieves a
smaller gain when N > 25. The insight behind such marginal gains in esti-
mation accuracy with more devices is that however big the network is, the
number of triangles including si and sj is limited by the range of the dis-
tance measurement used by the devices. The evaluation of estimation accu-
racy plotted in Fig. 3 indicate that the achievable localisation error can be
<10 cm when the measurement error rate is at 20% and N≥ 9. After ana-
lysing the estimation accuracy of TIDE/dwMDS, we conclude that our pro-
posed algorithm is suitable to estimate the inter-sensor distances for IoT
environments where direct device-to-device distance measurements are
not possible or available.

0 5 10 15 20 25 30 35 40
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

distance measurement error, %

de
vi

ce
 lo

ca
tio

n 
er

ro
r,

 m

N:4
N:9
N:16
N:25
N:100

a b

0 5 10 15 20 25 30 35 40
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

distance measurement error, %

de
vi

ce
 lo

ca
tio

n 
er

ro
r,

 m

N:4
N:9
N:16
N:25
N:100

Fig. 3 Simulation results of location estimation using dwMDS

a Fixed, grid-style topology
b Random topology

Conclusion and future work: We propose TIDE using the distance
measurements between the IoT devices and the moving object only.
Our solution is designed to support distributed systems by fostering
asynchronous distance estimation algorithms. The inter-sensor distance
estimation results are fed to a dwMDS localisation algorithm to identify
relative sensor coordinates. Performance evaluation results indicate that
TIDE is able to achieve reasonably accurate inter-sensor distance esti-
mation and localisation results. We note that TIDE may suffer from geo-
metrical flex ambiguities, which will be address in the future works.
Furthermore, we will deploy our solution into real environments to
conduct comprehensive experiments, and make improvements.
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